Interstitial water and solute recovery by inner medullary vasa recta.

نویسندگان

  • A Edwards
  • M J Delong
  • T L Pallone
چکیده

A recent model of volume and solute microvascular exchange in the renal medulla was extended by simulating the deposition of NaCl, urea, and water into the medullary interstitium from the loops of Henle and collecting ducts with generation rates that undergo spatial variation within the inner medullary interstitium. To build an exponential osmolality gradient in the inner medulla, as suggested by Koepsell et al. (H. Koepsell, W. E. A. P. Nicholson, W. Kriz, and H. J. Höhling. Pflügers Arch. 350: 167-184, 1974), the ratio of the interstitial area-weighted generation rate of small solutes to that of water must increase along the corticomedullary axis. We satisfied this condition either by holding the area-weighted generation rate of water constant while increasing that of NaCl and urea or by reducing the input rate of water with medullary depth. The latter case, in particular, yielded higher solute concentrations at the papillary tip. Assuming that the fraction of the filtered load recovered by inner medullary vasa recta for water, NaCl, and urea is 1%, 1%, and 40%, respectively, papillary tip osmolality is 1,470 mosmol/kgH(2)O when urea generation and NaCl generation per unit volume of interstitium increase exponentially and linearly, respectively. The inner medullary osmolar gradient also increases further when 1) medullary blood flow is reduced, 2) hydraulic conductivity of descending vasa recta (DVR) is lowered, and 3) vasa recta permeability to NaCl and urea is maximized. The coupling between water and small solute transport, resulting from aquaporin-1-mediated transcellular flux in DVR, also enhances tip osmolality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and perfusion of rat inner medullary vasa recta.

Outer medullary isolated descending vasa recta have proven to be experimentally tractable, and consequently much has been learned about outer medullary vasa recta endothelial transport, pericyte contractile mechanisms, and tubulovascular interactions. In contrast, inner medullary vasa recta have never been isolated from any species, and therefore isolated vasa recta function has never been subj...

متن کامل

Transport of plasma proteins across vasa recta in the renal medulla.

In this study, we have extended a mathematical model of microvascular exchange in the renal medulla to elucidate the mechanisms by which plasma proteins are transported between vasa recta and the interstitium. In contrast with other work, a distinction was made between the paracellular pathway and the transcellular route (i.e., water channels) in descending vasa recta (DVR). Our model first ind...

متن کامل

Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.

We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and d...

متن کامل

Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla.

Recent anatomic findings indicate that in the upper inner medulla of the rodent kidney, tubules, and vessels are organized around clusters of collecting ducts (CDs). Within CD clusters, CDs and some of the ascending vasa recta (AVR) and ascending thin limbs (ATLs), when viewed in transverse sections, form interstitial nodal spaces, which are arrayed at structured intervals throughout the inner ...

متن کامل

Modeling exchange of plasma proteins between microcirculation and interstitium of the renal medulla.

In the absence of evidence for lymphatics in the inner medulla of the kidney, it has been proposed that plasma proteins are cleared by convection out of the medullary interstitial fluid (ISF) directly into the ascending vasa recta (AVR). To clarify this hypothesis we have developed a mathematical model of the microvascular exchange of fluid, plasma proteins, and small solutes among the descendi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 278 2  شماره 

صفحات  -

تاریخ انتشار 2000